Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(8-quinolinolato- N, O)platinum(II) and its synthetic intermediate, 8-hydroxyquinolinium dichloro-(8-quinolinolato- N, O)platinate(II) tetrahydrate

Masako Kato, ${ }^{\text {a }}+$ Yuki Ogawa, ${ }^{\text {b }}$ Mikiko Kozakai ${ }^{\text {b }}$ and Yukihiro Sugimoto ${ }^{\text {c }}$

${ }^{\text {a Division of Material Science, Graduate School of Human Culture, Nara Women's }}$ University, Nara 630-8506, Japan, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan, and ${ }^{\text {c }}$ Arid Land Research Centre, Tottori University, Tottori 680-0001, Japan
Correspondence e-mail: kato@cc.nara-wu.ac.jp
Received 9 July 2001
Accepted 2 January 2002
Online 13 February 2002
$\operatorname{Bis}(8$-quinolinolato- $N, O)$ platinum(II), $\quad\left[\mathrm{Pt}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\right], \quad$ (I), has a centrosymmetric planar structure with trans coordination. The molecules form an inclined π stack, with an interplanar spacing of 3.400 (6) \AA. 8-Hydroxyquinolinium dichloro(8-quinolinolato- N, O) platinate(II) tetrahydrate, $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II), is soluble in water and is regarded as the synthetic intermediate of the insoluble neutral compound (I). The uncoordinated 8-hydroxyquinolinium cations and the monoquinolinolate complexes form an alternating π stack. The origins of fluorescence and phosphorescence in (II) are assigned to the 8 -hydroxyquinolinium cation and the monoquinolinolate- Pt complex, respectively.

Comment

The metal complexes of 8 -quinolinol (qH), such as $\left[\mathrm{Alq}_{3}\right]$, have attracted much attention recently as luminescent materials. In contrast with $\left[\mathrm{Alq}_{3}\right]$, which emits yellow-green fluorescence, bis(8-quinolinolato)platinum(II), $\left[\mathrm{Ptq}_{2}\right]$, (I), was reported to emit red phosphorescence with a relatively long lifetime (Ballardini et al., 1986). The origin was deduced to be a ligand-centred excited state on the basis of the similarity of the emission properties to those of the tris(8-quinolinolato)rhodium(III) and -iridium(III) complexes.

In the course of the synthesis of the red crystal of (I), we found a new orange crystal of (II), which showed both yellow fluorescence and red phosphorescence in solution. The emission maxima are 480 and 600 nm in $\mathrm{EtOH}-\mathrm{MeOH}(1: 1 \mathrm{v} / \mathrm{v})$ at

[^0]77 K , respectively. The phosphorescence spectrum is similar to that for (I) $\left(\lambda_{\max }=620 \mathrm{~nm}\right)$.

Compound (II) is soluble in water, and very soluble in organic solvents such as methanol and dimethyl sulfoxide, while the neutral compound (I) is much less soluble. However, once compound (II) had dissolved, the red crystal (I) crystallized from the solution. Therefore, (II) can be regarded as the synthetic intermediate of the more stable (I).

(II)

X-ray crystallography proved that (II) is an unexpected composite crystal of an uncoordinated 8-hydroxyquinolinium ion and the monoquinolinolate complex, $\left(\mathrm{qH}_{2}\right)\left[\mathrm{PtCl}_{2} \mathrm{q}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. In addition, the structure of (I) has also been determined, owing to the successful selection of a single crystal from mostly twin crystals.

As shown in Fig. 1, the molecular structure of (I) is planar and the two 8-quinolinolate ligands are coordinated in a trans geometry. The Pt atom lies on a crystallographic inversion centre. The deviations of the atoms from the least-squares plane of (I) are within $0.03 \AA$.

The crystal structure of (I) is isomorphous with the corresponding $\mathrm{Pd}^{\mathrm{II}}$ complex (Prout \& Wheeler, 1966). The bond lengths and angles of (I) are essentially identical to those of

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids plotted at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2
A perspective view of (II), showing the atom-numbering scheme and displacement ellipsoids plotted at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. The hydrate water molecules have been omitted for clarity.
the charge-transfer complex $\left[\mathrm{Ptq}_{2}\right] \cdot \mathrm{TCNQ}$ (TCNQ is $7,7,8,8-$ tetracyanoquinodimethane; Bergamini et al., 1987). The Pt complexes in (I) are stacked in an inclined fashion, the interplanar spacing of the $\pi-\pi$ stack being 3.400 (6) \AA. The long Pt. . Pt distance of 4.704 (2) \AA, which is equal to the cell length of the b axis, suggests no $\mathrm{Pt}-\mathrm{Pt}$ electronic interaction.

Fig. 2 shows a perspective view of (II). The crystal consists of uncoordinated 8 -hydroxyquinolinium cations and mono-quinolinolate-Pt complex anions, stacked alternately to form a π stack. The interplanar spacings are found to be typical for π stacks, at 3.44 (1) and 3.47 (1) \AA, respectively. The structural features of the integrated stack are similar to those for (ethylenediamine)(α-diimine)platinum(II) complexes and phenanthroline (Kato et al., 2001).

The water molecules in (II) form hydrogen bonds with the Cl^{-}and quinolinolate ligands in the Pt complex. Differential Fourier synthesis confirmed the existence of the 8 -hydroxyquinolinium cation in (II), showing the peaks of the H atoms bonded to N and O atoms. The geometry of the 8 -hydroxyquinolinium cation is very similar to those of the coordinated quinolinolate ions in (I) and (II).

An additional interesting feature in (II) is the inequality of the coordination angles, in contrast to the symmetrical structure of (I); the $\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{N} 1$ angle is much larger than $\mathrm{Cl} 1-$ $\mathrm{Pt} 1-\mathrm{O} 1$ (Table 2). This is due to the steric effect of the large Cl atoms and the $\alpha-\mathrm{H}$ of the quinolinolate ligand $(\mathrm{Cl} 2 \cdots \mathrm{H} 1$ 2.70 A).

On the basis of the structures of (I) and (II), the origin of fluorescence for (II) was assigned to the 8-hydroxyquinolinium cation, while phosphorescence is due to the monoquinolinolate-Pt complex; the latter would have the same origin as that for (I).

Experimental

To an aqueous solution of $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$ adjusted to $c a \mathrm{pH} 10$, two equimolar amounts of 8 -quinolinol (qH) were added and the solution heated for a few minutes. After cooling to room temperature, a darkorange precipitate was deposited. This was recrystallized from dimethyl sulfoxide (DMSO) to give red crystals of (I). The filtrate of the reaction solution was allowed to stand for several days at room
temperature to give orange needle crystals of (II). Spectroscopic analysis, ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, δ, p.p.m.) for (I): $7.00(d, 7 \mathrm{H}), 7.12(d$, $5 \mathrm{H}), 7.48(t, 6 \mathrm{H}), 7.71(d d, 3 \mathrm{H}), 8.65(d, 4 \mathrm{H}), 8.80(d, 2 \mathrm{H})$; for (II): 7.01 $\left(d, 7 \mathrm{H}^{c}\right), 7.17\left(d, 5 \mathrm{H}^{c}\right), 7.48\left(t, 6 \mathrm{H}^{c}\right), 7.71\left(d d, 3 \mathrm{H}^{c}\right), 8.67\left(d, 4 \mathrm{H}^{c}\right), 9.38$ $\left(d, 2 \mathrm{H}^{c}\right), 7.30\left(d, 7 \mathrm{H}^{u}\right), 7.57\left(m, 5 \mathrm{H}\right.$ and $\left.6 \mathrm{H}^{u}\right), 7.79\left(d d, 3 \mathrm{H}^{u}\right), 8.71$ $\left(d, 4 \mathrm{H}^{u}\right), 8.95\left(d, 2 \mathrm{H}^{u}\right), 10.92\left(b r,-\mathrm{OH}^{u}\right)$, where u and c denote the 8 -hydroxyquinolinium ion and the coordinated 8 -quinolinolate ion, respectively; ESI-MS(-) for (II): $410\left([M]^{-}\right), 821\left([2 M+\mathrm{H}]^{-}\right), 843$ $\left([2 M+\mathrm{Na}]^{-}\right)$.

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Pt} 1-\mathrm{O} 1$	$2.014(3)$	$\mathrm{Pt} 1-\mathrm{N} 1$	$1.992(4)$
$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{N} 1$	$82.8(1)$	$\mathrm{O} 1-\mathrm{Pt} 1-\mathrm{N} 1^{\mathrm{i}}$	$97.2(1)$

Symmetry code: (i) $-x,-y,-z$.

Compound (I)

Crystal data
$\left[\mathrm{Pt}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{2}\right]$
$M_{r}=483.39$
Monoclinic, $P 2_{1} / n$
$a=11.349$ (2) \AA
$b=4.704(2) \AA$
$c=13.731$ (1) \AA
$\beta=106.43(1)^{\circ}$
$V=703.0(3) \AA^{3}$
$Z=2$
$D_{x}=2.283 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=14.6-15.0^{\circ}$
$\mu=9.95 \mathrm{~mm}^{-1}$
$T=294.2 \mathrm{~K}$
Plate, red
$0.21 \times 0.10 \times 0.02 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: analytical
(de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.397, T_{\text {max }}=0.822$
1685 measured reflections
1607 independent reflections
1053 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 14$
$k=-6 \rightarrow 0$
$l=-17 \rightarrow 17$
3 standard reflections every 150 reflections intensity decay: 1.7\%

Refinement

Refinement on F^{2}
$R(F)=0.018$
$w R\left(F^{2}\right)=0.045$
$S=0.97$
1607 reflections
107 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0181 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.83 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.43 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0006

Compound (II)

Crystal data

$\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}\right)\left[\mathrm{PtCl}_{2}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O} \quad Z=2$
$M_{r}=628.38$
Triclinic, $P \overline{1}$
$a=10.665$ (3) A
$b=14.492$ (3) \AA
$c=7.266(2) \AA$
$\alpha=100.46$ (2) ${ }^{\circ}$
$\beta=104.13$ (2) ${ }^{\circ}$
$\gamma=85.93(2)^{\circ}$
$V=1070.5(5) \AA^{3}$
$D_{x}=1.949 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=14.7-15.0^{\circ}$
$\mu=6.81 \mathrm{~mm}^{-1}$
$T=294.2 \mathrm{~K}$
Needle, orange
$0.28 \times 0.08 \times 0.06 \mathrm{~mm}$

Table 2
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$) for (II).

$\mathrm{Pt} 1-\mathrm{Cl} 1$	$2.304(3)$	$\mathrm{Pt} 1-\mathrm{O} 1$	$2.010(6)$
$\mathrm{Pt} 1-\mathrm{Cl} 2$	$2.297(2)$	$\mathrm{Pt} 1-\mathrm{N} 1$	$1.999(7)$
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{Cl} 2$	$91.55(9)$	$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{O} 1$	$178.0(2)$
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{O} 1$	$173.3(2)$	$\mathrm{Cl} 2-\mathrm{Pt} 1-\mathrm{N} 1$	$95.0(2)$
$\mathrm{Cl} 1-\mathrm{Pt} 1-\mathrm{N} 1$			$82.9(3)$

Data collection

Rigaku AFC-7R diffractometer

$$
R_{\mathrm{int}}=0.023
$$

$\omega / 2 \theta$ scans
$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: ψ scan
(North et al., 1968)
$h=-13 \rightarrow 13$
$T_{\text {min }}=0.426, T_{\text {max }}=0.664$
5828 measured reflections
4929 independent reflections
3788 reflections with $I>2 \sigma(I)$
$k=-18 \rightarrow 18$
$l=-9 \rightarrow 1$
3 standard reflections every 150 reflections intensity decay: 0.1%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0847 P)^{2}\right. \\
\quad+1.3493 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=3.46 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}{ }^{-1.51 \mathrm{e}^{-3}}
\end{aligned}
$$

Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

This work was partially supported by a Grant-in-Aid for Scientific Research (No. 13640559) from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1121). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ballardini, R., Varani, G., Indelli, M. T. \& Scandola, F. (1986). Inorg. Chem. 25, 3858-3865.
Bergamini, P., Bertolasi, V., Ferretti, V. \& Sostero, S. (1987). Inorg. Chim. Acta, 126, 151-155.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kato, M., Takahashi, J., Sugimoto, Y., Kosuge, C., Kishi, S. \& Yano, S. (2001). J. Chem. Soc. Dalton Trans. pp. 747-752.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (2000). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Prout, C. K. \& Wheeler, A. G. (1966). J. Chem. Soc. A, pp. 12861290.

Rigaku (1995). Rigaku/AFC Diffractometer Control Software. Version 5.32b. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: \dagger Alternative address: PRESTO, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan.

